Tools For Flexible And Rapid Thermal Analysis And Design

Matteo Gorlani

Danilo Lazzeri

Blue GROUP, Torino, Italy

BLUE GROUP - Engineering & Design

THERMAL CONTROL SYSTEM (TCS)

TARGET:

- Maintain temperatures levels to avoid damage and allow operability
 - Minimise temperature fluctuations and thermal cycling of components to limit ageing.

Classical electronics equipment [-10°C ; +40°C] Battery [0°C ; +20°C] Propulsion system [+10°C ; +50°C] Solar array [-190°C ; +120°C]

High Temperatures: 400°C to 1600°C for thermal protection

Cryogenics: Earth observation IR Detectors in the range 50 to 100K,

PRESSURE TO IMPROVE THE PRESENT SCENARIO

INCREASING COMPLEXITY of space system and missions;

- Achieve design with LOWER COSTS IN SHORTER TIME;
- DECREASING COMPUTATIONAL COSTS;
- Awareness of limits in consolidated approach:
 - frequent OVER-DESIGN;
 - TESTS AND CORRELATION COSTS;
 - LIMITED FLEXIBILITY to accommodate design changes;

METHODS & TOOLS FOR IMPROVEMENTS

- **Stochastic ANALYSIS & DESIGN**
- Stochastic Optimisation
- Multidisciplinary ANALYSIS & DESIGN
- Integrated ANALYSIS & DESIGN Environment

STOCHASTIC ANALYSIS & DESIGN

Stochastic Models vs. Deterministic Models

Medieval Castle of Moncrivello (VC), Italy - April 1st 2006 Sheet 9

STOCHASTIC ANALYSIS & DESIGN

Design Robustness Assessment

Design Sensitivity Assessment $\int y_k \\ \int y_k$

1st Internationl Convention of Technologies of the Frontier Medieval Castle of Moncrivello (VC), Italy - April 1st 2006 Sheet 10

RESPONSE

MULTIDISCIPLINARY ANALYSIS & DESIGN

INTEGRATED DEVELOPMENT ENVIRONMENT

INTEGRATED DEVELOPMENT ENVIRONMENT

Model and Analysis Postprocessing

3D Visualisation

PRESENTATION BACKGROUND

TCDT: Thermal Concept Design Tool, European Space Agency Project 18115/04/NL/CP

FSASTA: Feasibility Of Using A Stochastic Approach For Space Thermal Analysis,

European Space Agency Project 16603/02/NL/CP

TITOSIM: 'Time to Market Reduction via Statistical Information Management', Growth European project: GRD1 - 2000 – 25724

PROMENVIR: High Performance Computer Based Probabilistic Mechanical Design Environment, ESPRIT European project 20189

Contacts:

Matteo Gorlani

Danilo Lazzeri

m.gorlani@blue-group.it d.lazzeri@blue-group.it

